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Humans make sense of the world around them by 
observing it, and learning to predict what might happen 
next. Consider a child learning to catch a ball: the child 
(usually) knows nothing about the physical laws that 
govern the motion of a thrown ball; however, by a pro-
cess of observation, trial and error, the child adjusts his 
or her understanding of the ball’s motion, and how to 
move his or her body, until he or she is able to catch it 
reliably. In other words, the child has learned how to 
catch the ball by building a sufficiently accurate and 
useful ‘model’ of the process, by repeatedly testing this 
model against the data and by making corrections to 
the model to make it better.

‘Machine learning’ refers broadly to the process of fit-
ting predictive models to data or of identifying informa-
tive groupings within data. The field of machine learning 
essentially attempts to approximate or imitate humans’ 
ability to recognize patterns, albeit in an objective man-
ner, using computation. Machine learning is particularly 
useful when the dataset one wishes to analyse is too large 
(many individual data points) or too complex (contains 
a large number of features) for human analysis and/or 
when it is desired to automate the process of data analy-
sis to establish a reproducible and time- efficient pipeline. 
Data from biological experiments frequently possess 
these properties; biological datasets have grown enor-
mously in both size and complexity in the past few dec-
ades, and it is becoming increasingly important not only 
to have some practical means of making sense of this 
data abundance but also to have a sound understand-
ing of the techniques that are used. Machine learning 
has been used in biology for a number of decades, but 
it has steadily grown in importance to the point where 

it is used in nearly every field of biology. However, only 
in the past few years has the field taken a more critical 
look at the available strategies and begun to assess which 
methods are most appropriate in different scenarios,  
or even whether they are appropriate at all.

This Review aims to inform biologists on how they 
can start to understand and use machine learning tech-
niques. We do not intend to present a thorough literature 
review of articles using machine learning for biological 
problems1, or to describe the detailed mathematics of 
various machine learning methods2,3. Instead, we focus 
on linking particular techniques to different types of bio-
logical data (similar reviews are available for specific  
biological disciplines; see, for example, refs4–11). We also 
attempt to distil some best practices of how to practi-
cally go about the process of training and improving a 
model. The complexity of biological data presents pitfalls 
as well as opportunities for their analysis using machine 
learning techniques. To address these, we discuss the 
widespread issues that affect the validity of studies, with 
guidance on how to avoid them. The bulk of the Review 
is devoted to the description of a number of machine 
learning techniques, and in each case we provide exam-
ples of the appropriate application of the method and 
how to interpret the results. The methods discussed 
include traditional machine learning methods, as these 
are still the best choices in many cases, and deep learning 
with artificial neural networks, which are emerging as 
the most effective methods for many tasks. We finish 
by describing what the future holds for incorporating 
machine learning in data analysis pipelines in biology.

There are two goals when one is using machine learn-
ing in biology. The first is to make accurate predictions 

Deep learning
Machine learning methods 
based on neural networks.  
The adjective ‘deep’ refers  
to the use of many hidden 
layers in the network, two 
hidden layers as a minimum 
but usually many more than 
that. Deep learning is a subset 
of machine learning, and  
hence of artificial intelligence 
more broadly.

Artificial neural networks
A collection of connected 
nodes loosely representing 
neuron connectivity in a 
biological brain. each node is 
part of a layer and represents  
a number calculated from the 
previous layer. The connections, 
or edges, allow a signal to flow 
from the input layer to the 
output layer via hidden layers.

A guide to machine learning  
for biologists
Joe G. Greener  1,2, Shaun M. Kandathil  1,2, Lewis Moffat1 and David T. Jones  1 ✉

Abstract | The expanding scale and inherent complexity of biological data have encouraged  
a growing use of machine learning in biology to build informative and predictive models of the 
underlying biological processes. All machine learning techniques fit models to data; however, 
the specific methods are quite varied and can at first glance seem bewildering. In this Review, 
we aim to provide readers with a gentle introduction to a few key machine learning techniques, 
including the most recently developed and widely used techniques involving deep neural 
networks. We describe how different techniques may be suited to specific types of biological data, 
and also discuss some best practices and points to consider when one is embarking on experiments 
involving machine learning. Some emerging directions in machine learning methodology are 
also discussed.

1Department of Computer 
Science, University College 
London, London, UK.
2These authors contributed 
equally: Joe G. Greener, 
Shaun M. Kandathil. 

✉e- mail: d.t.jones@ucl.ac.uk

https://doi.org/10.1038/ 
s41580-021-00407-0

REVIEWS

Nature reviews | Molecular cell Biology

http://orcid.org/0000-0002-5154-1929
http://orcid.org/0000-0002-2671-2140
http://orcid.org/0000-0001-8626-3765
mailto:d.t.jones@ucl.ac.uk
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41580-021-00407-0&domain=pdf


0123456789();: 

where experimental data are lacking, and use these 
predictions to guide future research efforts. However, 
as scientists we seek to understand the world, and so 
the second goal is to use machine learning to further 
our understanding of biology. Throughout this guide 
we discuss how these two goals often come into con-
flict in machine learning, and how to extract under-
standing from models that are often treated as ‘black 
boxes’ because their inner workings are difficult to 
understand12.

Key concepts
We first introduce a number of key concepts in machine 
learning. Where possible, we illustrate these concepts 
with examples taken from biological literature.

General terms. A dataset comprises a number of data 
points or instances, each of which can be thought of 
as a single observation from an experiment. Each data 
point is described by a (usually fixed) number of fea-
tures. Examples of such features include length, time, 
concentration and gene expression level. A machine 
learning task is an objective specification for what we 
want a machine learning model to accomplish. For 
example, for an experiment investigating the expres-
sion of genes over time, we might want to predict the 
rate of conversion of a specific metabolite into another 
species. In this case, the features ‘gene expression level’ 
and ‘time’ could be termed input features or simply 
inputs for the model, and ‘conversion rate’ would be 
the desired output of the model; that is, the quantity 
we are interested in predicting. A model can have any 
number of input and output features. Features can be 
either continuous (taking continuous numerical values) 
or categorical (taking only discrete values). Quite often,  
categorical features are simply binary and are either true 
(1) or false (0).

Supervised and unsupervised learning. ‘Supervised 
machine learning’ refers to the fitting of a model to 
data (or a subset of data) that have been labelled — 
where there exists some ground truth property, which 
is usually experimentally measured or assigned by 
humans. Examples include protein secondary struc-
ture prediction13 and prediction of genome accessibi-
lity to genome- regulatory factors14. In both cases, the 
ground truth is derived ultimately from laboratory 
observations, but often these raw data are preprocessed 
in some way. In the case of secondary structure, for 
example, the ground truth data are derived from ana-
lysing protein crystal structure data in the Protein Data 
Bank, and in the latter case, the ground truth comes 
from data derived from DNA- sequencing experiments.  
By contrast, unsupervised learning methods are able to 
identify patterns in unlabelled data, without the need  
to provide the system with the ground truth informa-
tion in the form of predetermined labels, such as finding 
subsets of patients with similar expression levels in a 
gene expression study15 or predicting mutation effects 
from gene sequence co- variation16. Sometimes the two 
approaches are combined in semi-supervised learning, 
where small amounts of labelled data are combined with 

large amounts of unlabelled data. This can improve 
performance in cases where labelled data are costly  
to obtain.

Classification, regression and clustering problems. When 
a problem involves assigning data points to a set of dis-
crete categories (for example, ‘cancerous’ or ‘not can-
cerous’), the problem is called a ‘classification problem’, 
and any algorithm that performs such classification can 
be said to be a classifier. By contrast, regression models 
output a continuous set of values, such as predicting the 
free energy change of folding after mutating a residue 
in a protein17. Continuous values can be thresholded 
or otherwise discretized, meaning that it is often pos-
sible to reformulate regression problems as classifi-
cation problems. For example, the free energy change 
mentioned above can be binned into ranges of values 
that are favourable or unfavourable for protein stability. 
Clustering methods are used to predict groupings of 
similar data points in a dataset, and are usually based on 
some measure of similarity between data points. They 
are unsupervised methods that do not require that the 
examples in a dataset have labels. For example, in a 
gene expression study, clustering could find subsets of 
patients with similar gene expression.

Classes and labels. The discrete set of values returned 
by a classifier can be made to be mutually exclusive, in 
which case they are called ‘classes’. Where these values 
need not be mutually exclusive, they are termed ‘labels’. 
For example, a residue in a protein structure can be in 
only one of multiple secondary structure classes, but 
could simultaneously be assigned the non- exclusive 
labels of being α- helical and transmembrane. Classes 
and labels are usually represented by an  encoding  
(for example, a one- hot encoding).

Loss or cost functions. The output or outputs of a 
machine learning model are never ideal and will diverge 
from the ground truth. The mathematical functions  
that measure this deviation or in more general terms that 
measure the amount of ‘disagreement’ between the 
obtained and ideal outputs are referred to as ‘loss func-
tions’ or ‘cost functions’. In supervised learning settings,  
the loss function would be a measure of deviation  
of the output relative to the ground truth output. Examples 
include mean squared error loss for regression problems 
and binary cross entropy for classification problems.

Parameters and hyperparameters. Models are essentially 
mathematical functions that operate on some set of input 
features and produce one or more output values or fea-
tures. To be able to learn on training data, models con-
tain adjustable parameters whose values can be changed 
over the training process to achieve the best performance 
of the model (see later). In a simple regression model, 
for example, each feature has a parameter that is multi-
plied by the feature value, and these are added together 
to make the prediction. Hyperparameters are adjustable 
values that are not considered part of the model itself 
in that they are not updated during training, but which 
still have an impact on the training of the model and its 

Ground truth
The true value that the output 
of a machine learning model  
is compared with to train the 
model and test performance. 
These data usually come from 
experimental data (for example, 
accessibility of a region of  
DNA to transcription factors)  
or expert human annotation 
(for example healthy or 
pathological medical image).

Encoding
Any scheme for numerically 
representing (often categorical) 
data in a form suitable for use 
in a machine learning model. 
An encoding can be a fixed 
numerical representation  
(for example, one- hot or 
continuous encoding) or can  
be defined using parameters 
that are trained along with  
the rest of a model.

One- hot encoding
An encoding scheme that 
represents a fixed set of n 
categorical inputs using n 
unique n- dimensional vectors, 
each with one element set  
to 1 and the rest set to 0.  
for example, the set of three 
letters (A,B,C) could be 
represented by the three 
vectors [1,0,0], [0,1,0]  
and [0,0,1], respectively.

Mean squared error
A loss function that calculates 
the average squared difference 
between the predicted values 
and the ground truth. This 
function heavily penalizes 
outliers because it increases 
rapidly as the difference 
between a predicted value  
and the ground truth grows.

Binary cross entropy
The most common loss 
function for training a binary 
classifier; that is, for tasks 
aimed at answering a question 
with only two choices (such  
as cancer versus non- cancer); 
sometimes called ‘log loss’.
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performance. A common example of a hyperparame-
ter is the learning rate, which controls the rate or speed 
with which the model’s parameters are altered during 
training.

Training, validation and testing. Before being used 
to make predictions, models require training, which 
involves automatically adjusting the parameters of a 
model to improve its performance. In a supervised 
learning setting, this involves modifying the parameters 
so the model performs well on a training dataset, by 
minimizing the average value of the loss or cost func-
tion (described earlier). Usually, a separate validation 
dataset is used to monitor but not influence the train-
ing process so as to detect potential overfitting (see the 
next section). In unsupervised settings, a cost func-
tion is still minimized, although it does not operate on 
ground truth outputs. Once a model is trained, it can 
be tested on data not used for training. See Box 1 for a 
guide to the overall process of training and how to split 
the data appropriately between training and testing sets.  
A flowchart to help the overall process is shown in fig. 1, 
and some of the concepts in model training are shown 
in fig. 2.

Overfitting and underfitting. The purpose of fitting a 
model to training data is to capture the ‘true’ relation-
ship between the variables in the data, such that the 
model has predictive power on unseen (non- training) 
data. Models that are either overfitted or underfitted 
will produce poor predictions on data not in the train-
ing set (fig.  2d). An overfitted model will produce 
excellent results on data in the training set (usually as 
a result of having too many parameters), but will pro-
duce poor results on unseen data. The overfitted model 
in fig. 2d passes exactly through every training point, 
and so its prediction error on the training set will be 
zero. However, it is evident that this model has ‘memo-
rized’ the training data and is unlikely to produce good 
results on unseen data. By contrast, an underfitted model 
fails to adequately capture the relationships between the 
variables in the data. This could be due to an incorrect 
choice of model type, incomplete or incorrect assump-
tions about the data, too few parameters in the model 
and/or an incomplete training process. The underfitted 
model depicted in fig. 2d is inadequate for the data it 
is trying to fit; in this case it is evident that the vari-
ables have a non- linear relationship, which cannot be 
adequa tely described with a simple linear model and so  
a non- linear model would be more appropriate.

Inductive bias and the bias–variance trade- off. The 
‘inductive bias’ of a model refers to the set of assump-
tions made in the learning algorithm that leads it to 
favour a particular solution to a learning problem over 
others. It can be thought of as the model’s preference 
for a particular type of solution to a learning problem 
over others. This preference is often programmed into 
the model using its specific mathematical form and/or  
by using a particular loss function. For example, the 
inductive bias of recurrent neural networks (RNNs; dis-
cussed later) is that there are sequential dependencies in 
the input data such as the concentration of a metabolite 
over time. This dependence is explicitly accounted for in 
the mathematical form of an RNN. Different inductive 
biases in different model types make them more suitable 
and usually better performing for specific types of data. 
Another important concept is the trade- off between bias 
and variance. A model with a high bias can be said to 
have stronger constraints on the trained model, whereas 
a model with low bias makes fewer assumptions about 
the property being modelled, and can, in theory, model a  
wide variety of function types. The variance of a model 
describes how much the trained model changes in  
response to training it on different training datasets.  
In general, we desire models with very low bias and low 
variance, although these objectives are often in conflict 
as a model with low bias will often learn different signals 
on different training sets. Controlling the bias–variance 
trade- off is key to avoiding overfitting or underfitting.

Traditional machine learning
We now discuss several key machine learning methods, 
with an emphasis on their particular strengths and 
weaknesses. A comparison of different machine learn-
ing approaches is shown in TABle 1. We begin with a 
discussion of methods not based on neural networks, 

Box 1 | Doing machine learning

Here we outline the steps that should be taken when one is training a machine 
learning model. there is surprisingly little guidance available on the model selection 
and training process146,147, with descriptions of the stepping stones and failed models 
rarely making it into published research articles. the first step, before touching any 
machine learning code, should be to fully understand the data (inputs) and prediction 
task (outputs) at hand. this means a biological understanding of the question, such  
as knowing the origin of the data and the sources of noise, and having an idea of how 
the output could theoretically be predicted from the input using biological principles.  
For example, it can be reasoned that different amino acids might have preferences for 
particular secondary structures in proteins, so it makes sense to predict secondary 
structure from amino acid frequencies at each position in a protein sequence. it is also 
important to know how the inputs and outputs are stored computationally. are they 
normalized to prevent one feature having an unduly large influence on prediction? 
are they encoded as binary variables or continuously? are there duplicate entries?  
are there missing data elements?

Next, the data should be split to allow training, validation and testing. there are a 
number of ways to do this, two of which are shown in fig. 2a. the training set is used to 
directly update the parameters of the model being trained. the validation set, usually 
around 10% of the available data, is used to monitor training, select hyperparameters 
and prevent the model overfitting to the training data. Often k- fold cross- validation is 
used: the training set is split into k evenly sized partitions (for example, five or ten) to 
form k different training and validation sets, and the performance is compared across 
each partition to select the best hyperparameters. the test set, sometimes called  
the ‘hold- out set’, typically also around 10% of the available data, is used to assess the 
performance of the model on data not used for training or validation (that is, estimate 
its expected real- world performance). the test set should be used only once, at the 
very end of the study, or as infrequently as possible27,38 to avoid tuning the model to  
fit the test set. see the section Data leakage for issues to consider when making a fair 
test set.

the next step is model selection, which depends on the nature of the data and the 
prediction task, and is summarized in fig. 1. the training set is used to train the model 
following best practices of the software framework being used. Most methods have a 
handful of hyperparameters that need to be tuned to achieve the best performance. 
this can be done using random search or grid search, and can be combined with k- fold 
cross- validation as outlined above27. Model ensembling should be considered, where the 
outputs of a number of similar models are simply averaged to give a relatively reliable 
way to boost overall accuracy of the modelling task. Finally, the accuracy of the model 
on the test set (see above) should be assessed.
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sometimes called ‘traditional machine learning’. figure 3 
shows some of the methods of traditional machine 
learning. Various software packages can be used to train 
such models, including scikit- learn in Python18, caret in 
R19 and MLJ in Julia20.

When one is developing machine learning methods 
for use with biological data, traditional machine learning 
should generally be seen as the first area to explore in 
finding the most appropriate method for a given task. 
Deep learning can be a powerful tool, and is undeniably 
trendy currently. However, it is still limited in the appli-
cation areas in which it excels: when large amounts of 
data are available (for example, millions of data points); 
when each data point has many features; and when the 
features are highly structured (the features have clear 
relationships with one another, such as adjacent pixels 
in images)21. Data such as DNA, RNA and protein 
sequences22,23 and microscopy images24,25 are examples of 
biological data where these requirements can be met and 
deep learning has been successfully applied. However, 
the requirement for large amounts of data can make 
deep learning a poor choice even when the other two 
requirements are met.

Traditional methods, in comparison to deep learn-
ing, are much faster to develop and test on a given 
problem. Developing the architecture of a deep neural 
network and then training it can be a time-consuming 
and computationally expensive task to undertake26 com-
pared with traditional models such as support vector 
machines (SVMs) and random forests27. Although some 
approaches exist, with deep neural networks it is still 
not trivial to estimate feature importance28 (that is, how 
important each feature is for contributing to the predic-
tion) or the confidence of predictions of the model1,28,29, 
both of which are often essential in biological settings. 
Even if deep learning appears technically feasible for  

a particular biological prediction task, it is often still pru-
dent to train a traditional method to compare it against 
a neural network- based model, if possible30.

Traditional methods typically expect that each exam-
ple in the dataset has the same number of features, so this 
is not always possible. An obvious biological example of 
this is when protein, RNA or DNA sequences are being 
used and each example has a different length. To use tra-
ditional methods with these data, the data can be altered 
so they are all the same size using simple techniques such 
as padding and windowing. ‘Padding’ means taking 
each example and adding additional values containing 
zero until it is the same size as the largest example in 
the dataset. By contrast, windowing shortens indivi dual 
examples to a given size (for example, using only the 
first 100 residues of each protein in a dataset of protein 
sequences with lengths ranging from 100 upwards).

Use of classification and regression models. For regres-
sion problems such as those shown in fig. 3a, ridge 
regression (linear regression with a regularization term) 
is often a good starting point for developing a model, as 
it can provide a fast and well- understood benchmark for 
a given task. Other variants of linear regression such as 
LASSO regression31 and elastic net regression32 are also 
worth considering when there is a desire for a model to 
rely on a minimal number of features within the available 
data. Unfortunately, the relationships between features in 
the data are often non- linear, and so use of a model such 
as an SVM is often a more appropriate choice for these 
cases33. SVMs are a powerful type of regression and clas-
sification model that uses kernel functions to transform a 
non- separable problem into a separable problem that is 
easier to solve. SVMs can be used to perform both linear 
regression and non- linear regression depending on the 
kernel function used34–37. A good approach to developing 

Define task Obtain data Select model
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Small, fixed number of 
features or no data labels
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Support vector machine/
random forest/gradient boosting

Multilayer 
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Labelled data?

Connections between 
entities?

Graph 
convolutional 
network

Clustering

Dimensionality 
reduction

Regression 
methods

Train TuneForm test set 
(if supervised)

Test
(if supervised)

Yes
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Spatial or 
image data?
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2D/3D 
convolutional 
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Yes

Sequential 
data?
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Recurrent neural 
network/1D 
convolutional 
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Yes

No

No
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Just visualizing

Fig. 1 | choosing and training a machine learning method. The overall procedure for training a machine learning 
method is shown along the top. A decision tree to assist researchers in selecting a model is given below. This flowchart  
is intended to be used as a visual guide linking the concepts outlined in this Review. However, a simple overview such as 
this cannot cover every case. For example, the number of data points required for machine learning to become applicable 
depends on the number of features available for each data point, with more features requiring more data points, and  
also depends on the model being used. There are also deep learning models that work on unlabelled data.

Linear regression
A model that assumes that  
the output can be calculated 
from a linear combination  
of inputs; that is, each input 
feature is multiplied by a  
single parameter and these 
values are added. it is easy 
to interpret how these models 
make their predictions.

Kernel functions
Transformations applied to 
each data point to map the 
original points into a space in 
which they become separable 
with respect to their class.

Non- linear regression
A model where the output is 
calculated from a non- linear 
combination of inputs; that is, 
the input features can be 
combined during prediction 
using operations such as 
multiplication. These models 
can describe more complex 
phenomena than linear 
regression.
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a model is to train a linear SVM and an SVM with a 
radial basis function kernel (a general- purpose non- 
linear type of SVM) to quantify what gain, if any, can 
be had from a non- linear model. Non- linear approaches 
can provide more powerful models but at the cost of 
easy interpretation of which features are influencing the 
model, a trade- off mentioned in the introduction.

Many of the models that are commonly used in 
regression are also used for classification. Training a 
linear SVM and an SVM with a radial basis function 
kernel is also a good default starting point for a classifi-
cation task. An additional method that can be tried is 
k nearest neighbours classification38. Being one of the 
simplest classification methods, k nearest neighbours 
classification provides a useful baseline performance 
marker against which other more complex models, such 
as SVMs, can be compared. Another class of robust 
non- linear methods is ensemble- based models such as 
random forests39 and XGBoost40,41. Both methods are 
powerful non- linear models that have the added bene-
fits of providing feature importance estimates and often 
requiring minimal hyperparameter tuning. Due to the 
assignment of feature importance values and the deci-
sion tree structure, these models are a good choice if 
understanding which features contributed the most to a 
prediction is essential for biological understanding.

For both classification and regression, the many 
available models tend to have a bewildering variety of 
flavours and variants. Trying to predict how well suited a  

particular method will be to a particular problem a priori  
can be deceptive, and instead taking an empiri cal, 
trial- and- error approach to finding the best model is 
generally the most prudent approach. With modern 
machine learning suites such as scikit- learn18, changing 
between these model variants often requires changing 
just one line of code, so a good overall strategy for select-
ing the best method is to train and optimize a variety  
of the aforementioned methods and choose the one with 
the best performance on the validation set before finally 
comparing their performance on a separate test set.

Use of clustering models. The use of clustering algo-
rithms (fig. 3e) is pervasive within biology42,43. k- means is 
a strong general purpose approach to clustering that, like 
many other clustering algorithms, requires the number 
of clusters to be set as a hyperparameter44. DBSCAN is 
an alternative method that does not require the number 
of clusters to be predefined, but has the trade- off that 
other hyperparameters have to be set45. Dimensionality 
reduction can also be performed before clustering to 
improve performance for datasets with a large number 
of features.

Dimensionality reduction. Dimensionality reduction 
techniques are used to transform data with a large 
number of attributes (or dimensions) into a lower- 
dimensional form while preserving the different rela-
tionships between the data points as much as possible. 
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Fig. 2 | Training machine learning methods. a | Available data are often 
split into training, validation and test sets. The training set is directly used 
to train the model, the validation set is used to monitor training and the test 
set is used to assess the performance of the model. k- fold cross- validation 
with a test set can also be used. b | One- hot encoding is a common approach 
for representing categorical inputs where a single choice is permitted from 
a number of possibilities, in this case three possible protein secondary 
structure classes. The result of the encoding is a vector with three numbers, 
all equal to 0 except the occupied class, which is set to 1. This vector is used 
by the machine learning model. c | Continuous encoding represents 
numerical inputs, in this case the red, green and blue (RGB) values of a pixel 
in an image. Again the result is a vector with three numbers, corresponding 
to the amount of red, green and blue in the pixel. d | Failing to learn the 
underlying relationship between the variables is called ‘underfitting’, 

whereas learning the noise in the training data is called ‘overfitting’. 
Underfitting can be caused by using a model without sufficient complexity 
to describe the signal. Overfitting can be caused by using a model with too 
many parameters or by continuing training after it has learned the true 
relationship between the variables. e | The learning rate of the model 
determines how quickly learned parameters are adjusted when training a 
neural network or some traditional methods such as gradient boosting.  
A low learning rate can lead to slow training, which is time- consuming and 
requires considerable computing power. By contrast, a high learning rate 
can lead to quick convergence on a non- optimal solution and poor 
performance of the model. f | Early stopping is the process of terminating 
training at the point where the loss function on the validation set starts to 
increase, even if the loss function on the training set is still decreasing. Use 
of early stopping can prevent overfitting.

k nearest neighbours
A classification approach 
where a data point is classified 
on the basis of the known 
(ground truth) classes of the k 
most similar points in the 
training set using a majority 
voting rule. k is a parameter 
that can be tuned. Can also  
be used for regression by 
averaging the property value 
over the k nearest neighbours.
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Table 1 | comparison of different machine learning methods

Method Type of data example applications advantages Disadvantages

Ridge (and 
LASSO/elastic) 
regression

Labelled

Fixed number of features

Protein-variant effect 
prediction122

Chemical/biochemical 
reaction kinetics123

Easy to interpret

Easy to train

Good benchmark

Cannot learn complex feature 
relationships

Overfits with a large number  
of features

Support vector 
machine

Labelled

Fixed number of features

Protein function 
prediction124

Transmembrane-protein 
topology prediction125

Can perform both linear and 
non- linear classification and 
regression

Scaling to large datasets  
is often difficult

Random forest Labelled

Fixed number of features

Prediction of 
disease- associated genome 
mutations126

Scoring of protein–ligand 
interactions39

Learns how important each 
feature is to the prediction

Individual decision trees are 
human readable, allowing 
interpretation of how a decision 
is made

Less sensitive to feature scaling 
and normalization so easier to 
train and tune

Less appropriate for regression

Many decision trees are hard  
to interpret

Gradient 
boosting (for 
example, 
XGBoost)

Labelled

Fixed number of features

Gene expression profiling127 Learns how important each 
feature is to the prediction

Decision trees are 
human- readable, allowing 
interpretation of how a decision 
is made

Less sensitive to feature scaling 
and normalization so easier to 
train and tune

Can struggle to learn underlying 
signal if noise is present

Less appropriate for regression

Clustering Unlabelled

Fixed number of features

Differential gene expression 
analysis15

Model selection in protein 
structure prediction128

For low- dimensional data, good 
clustering is easily identifiable

Cluster validation metrics are 
available to assess performance

Scaling to large datasets is 
difficult for some methods

Noisy datasets sometimes yield 
contradictory results

Dimensionality 
reduction

Unlabelled

Large and fixed number of 
features

Single- cell transcriptomics49

Analysis of 
molecular-dynamics 
trajectories129

Provides visual representation 
of data

Goodness- of- fit evaluations 
usually available to assess 
performance

Hard to preserve both global 
and local differences in data

Scaling to large numbers of 
samples is difficult for some 
methods

Multilayer 
perceptron

Labelled

Fixed number of features

Protein secondary structure 
prediction13

Drug toxicity prediction54

Can fit datasets with fewer 
layers than architectures such as 
convolutional neural networks, 
making it easier and faster to 
train

Easy to overfit

Large number of parameters

Hard to interpret

Convolutional 
neural network

Spatial data arranged 
in a grid; for example, 
2D image (pixels) or 
3D volumes (voxels)

Allows variable input size

Protein residue–residue 
contact and distance 
prediction23

Medical image recognition24

Variable input size

Learns patterns irrespective 
of location in input

Receptive field, the amount 
of the input that is considered 
when predicting the output for 
each pixel, can be limited

Hard to train deeper 
architectures that use many 
layers to increase the receptive 
field and make more complex 
predictions

Recurrent 
neural network

Sequential data 
(for example, biological 
sequences or time- series 
data)

Allows variable input size

Protein engineering68

Predicting clinical events66

Variable input size

Sequences are found in many 
areas of biology

Long training times

High computing memory 
requirements

Graph 
convolutional 
network

Data characterized by 
connections between 
entities (spatial, 
interaction or association)

Allows variable input size

Predicting drug properties77

Interpreting molecular 
structures73,74

Knowledge extraction130

Variable graph sizes supported, 
which is important because most 
graphs in biology have variable 
size

Learns patterns by following 
graph connectivity so predictor 
uses most relevant associations

High computing memory 
requirements for large,  
densely connected graphs

Hard to train deeper 
architectures
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For example, data points that are similar (for example, 
two homologous protein sequences) should also be sim-
ilar in their lower- dimensional form, whereas dissimilar 
data points (for example, unrelated protein sequences) 
should remain dissimilar46,47. Two or three dimensions 
are often chosen to allow visualization of the data on a 
set of axes, although larger numbers of dimensions have 
uses in machine learning too. These techniques com-
prise both linear and non- linear transformations of the 
data. Examples common in biology include principal 
component analysis (PCA) as shown in fig. 3d, Uniform 
Manifold Approximation and Projection (UMAP) and 
t- distributed stochastic neighbour embedding (t- SNE)48. 
The technique to use depends on the situation: PCA 
retains global relationships between data points and is 
interpretable because each component is a linear combi-
nation of input features, meaning it is easy to understand 
which features give rise to variety in the data. t- SNE 
more strongly preserves local relationships between data 
points and is a flexible method that can reveal structure 
in complex datasets. Applications include single- cell 
transcriptomics for t- SNE49 and molecular dynamics 
trajectory analysis for principal component analysis.

Artificial neural networks
Artificial neural network models get their name from 
the fact that the form of the mathematical model that is 
being fit is inspired by the connectivity and behaviour of 
neurons in the brain and was originally designed to learn 
about brain function50. However, the neural networks 
in common use in data science are obsolete as brain 
models, and are now just machine learning models that 
can offer state- of- the- art performance in certain appli-
cations. Interest in neural network models has grown 
in recent decades owing to rapid advances in the archi-
tectures and training of deep neural networks26. In this 
section, we describe basic neural networks, as well as 
varieties that are widely used in biological studies. Some 
of these are shown in fig. 4.

Basic principles of neural networks. A key property 
of neural networks is that they are universal func-
tion approximators, which means that, with very few 
assumptions, a correctly configured neural network can 
approximate any mathematical function to an arbitrary 
level of accuracy. In other words, if any process (biolo-
gical or otherwise) can be thought of as some function 
of a set of variables, then that process can be modelled 
to any arbitrary degree of accuracy, governed by just the 
size or complexity of the model. The above definition of 
universal approximation is not mathematically rigorous, 

but does highlight one reason why interest in neural net-
works has persisted for decades. However, this guarantee 
does not provide a way of finding the optimal parame-
ters of a neural network model that will produce the best 
approximation for a given dataset. There is also no guar-
antee that the model will provide accurate predictions 
for new data51.

Artificial neurons are the building blocks of all neural 
network models. An artificial neuron is simply a mathe-
matical function that maps (converts) inputs to outputs in 
a specific way. A single artificial neuron takes in any num-
ber of input values, applies a specific mathematical func-
tion to them and returns an output value. The function 
used is usually represented as

∑y σ w x b= ( ) + , (1)
i

n

i i
=1











where xi represents a single input variable or feature 
(there are n such inputs), wi represents a learnable weight 
for that input, b represents a learnable bias term and  
σ represents a non- linear activation function that takes 
a single input and returns a single output. To create a 
network, artificial neurons are arranged in layers, with 
the output of one layer being the input to the next. The 
nodes of the network can be thought of as holding the y  
values from the above equation, which become the x val-
ues for the next layer. We describe various approaches 
for arranging artificial neurons in the following subsec-
tions, which are called ‘neural network architectures’. It is  
also common to combine the different architecture types;  
for example, in a convolutional neural network  
(CNN) used for classification, fully connected layers are 
usually used to produce the final classification output.

Multilayer perceptrons. The most basic layout of a neu-
ral network model is that of layers of artificial neurons 
arranged in a fully connected fashion, as shown in fig. 4a. 
In this layout, a fixed number of ‘input neurons’ represent 
the input feature values calculated from the data that are 
fed to the network, and each connection between a pair 
of neurons represents one trainable weight para meter. 
These weights are the main adjustable parameters in a 
neural network, and optimizing these weights is what 
is meant by neural network training. At the other end 
of the network, a number of output neurons represent 
the final output values from the network. Such a net-
work, when correctly configured, can be used to make 
complex, hierarchical decisions about the input, as each 
neuron in a given layer receives inputs from all neurons 
in the previous layer. Layers of neurons in this simple 

Method Type of data example applications advantages Disadvantages

Autoencoders Labelled or unlabelled 
data

Fixed or variable input size 
depending on architecture

Protein and gene 
engineering82

Prediction of DNA 
methylation81

Neural population 
dynamics131

Latent space provides 
low- dimensional representation 
that can be used to visualize 
input data

Can generate new samples, 
which is useful in areas such 
as protein design

Latent space specific to data 
in training set and may not be 
appropriate to other datasets

Testing newly generated 
samples often requires wet 
laboratory experiments

Each method has types of data and applications to which it is best suited, along with advantages and disadvantages when compared with other methods.

Table 1 (cont.) | comparison of different machine learning methods
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arrangement are often called ‘multilayer perceptrons’ 
and were the first networks useful for bioinformatics 
applications52,53. They are still widely used in a number of 
biological modelling applications today due to their ease 
and speed of training13,54. In many other applications, 
however, these simple architectures have been surpassed 
by newer model architectures discussed below, although 
some of these newer architectures still often make use of 
fully connected layers as subcomponents.

Convolutional neural networks. CNNs are ideally suited 
for image- like data, where the data possess some type of 
local structure, and where the recognition of such struc-
ture is a key objective of the analysis. With the example 
of images, this local structure could relate to specific 
types of objects in a field of view (for example, cells in 
a microscopy image), represented by specific local pat-
terns of colours and/or edges in spatially close pixels in 
an input image.

CNNs are composed of one or more convolutional 
layers (see fig. 4b), in which the output is the result of 
applying a small, one- layer fully connected neural net-
work, called a ‘filter’ or ‘kernel’, to local groups of fea-
tures in the input. In the case of image- like inputs, this 

local area would be a small patch of pixels in the image. 
The outputs of a convolutional layer are also image- like 
arrays, carrying the result of ‘sliding’ the filter over the 
entire input and computing an output at each position. 
Crucially, the same filter is used across all pixels, allow-
ing the filters to learn local structure in the input data. 
It is common in deeper CNNs to use skip connections 
that allow the input signal to bypass one or more layers 
in addition to passing through the processing units in 
the layer. This type of network is called a ‘residual net-
work’ and allows training to converge more quickly on 
accurate solutions.

CNNs can be configured to operate effectively on 
data of different spatial structure. For example, a 1D 
CNN would have filters that slide in just one direction 
(say from left to right); this type of CNN would be suit-
able for data that have only one spatial dimension (such 
as text or biological sequences). 2D CNNs operate on 
data with two spatial dimensions, such as digital images. 
3D CNNs operate on volumetric data, such as magnetic 
resonance imaging scans.

CNNs have seen significant success in biology for 
a variety of data types. Recent advances in protein 
structure prediction have used information on the 
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Fig. 3 | Traditional machine learning methods. a | Regression finds the relationship between a dependent variable (the 
observed property) and one or more independent variables (features); for example, predicting the weight of a person from 
the person’s height. b | A support vector machine (SVM) transforms the original input data such that in their transformed 
versions (called the ‘latent representation’) data belonging to separate categories are divided by a clear gap that is made as 
wide as possible. In this case we show a prediction of whether a protein is ordered or disordered, with the axes representing 
dimensions of the transformed data. c | Gradient boosting uses an ensemble of weak prediction models, typically decision 
trees, to make predictions. For example, active drugs can be predicted from molecular descriptors such as molecular 
weight and the presence of particular chemical groups. Individual predictors are combined in a stage- wise manner to  
make the final prediction. d | Principal component analysis (PCA) finds a series of feature combinations that best describe 
the data while being orthogonal to each other. It is commonly used for dimensionality reduction. In the case of the height 
and weight of a person, the first principal component (PC1), corresponding to a linear combination of height and weight, 
describes the strong positive correlation, whereas PC2 might describe other variables that do not correlate strongly with 
those, such as percentage body fat or muscle mass. e | Clustering uses one of various algorithms to group sets of similar 
objects (for example, grouping cell types on the basis of gene expression profiles).
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co- evolution of residue pairs in related protein sequences 
to extract information on residue pair contacts and dis-
tances, allowing predictions of 3D protein structures to 
be built at unprecedented accuracy23,55. In this case, the 
network learns to pick out direct coupling interactions, 
and accurate predictions can be made even for sequences 
with few or no related sequences56. CNNs have also 
been applied successfully to identify variants in genetic 
sequence data57, 3D genome folding58, DNA–protein 
interactions22,59, cryogenic electron microscopy image 
analysis60,61 and image classification in medically impor-
tant contexts (such as detection of malignancy), where 
they often now rival expert human performance24,62.

Recurrent neural networks. RNNs are most suited to 
data that are in the form of ordered sequences, such that 
there exists (at least notionally) some dependence or 
correlation between one point in the sequence and the 
next. Probably their main application outside biology is 
in natural language processing, where text is treated as 
a sequence of words or characters. As shown in fig. 4c, 

RNNs can be thought of as a block of neural network 
layers that take as input the data corresponding to each 
entry (or time step) in a sequence and produce an output 
for each entry that is dependent on entries that have pre-
viously been processed. They can also be used to gener-
ate a representation of the whole sequence that is passed 
to later layers of the network to generate the output. This 
is useful as sequences of any length can be converted 
to a fixed- size representation and input to a multilayer 
perceptron. Obvious examples for the use of RNNs in 
biology include analysis of gene or protein sequences, 
with tasks including identifying promoter regions from 
gene sequences, predicting protein secondary structure 
or modelling gene expression levels over time; in the 
last case, the value at a given time point would count as 
one entry in a sequence. The more advanced long short- 
term memory or gated recurrent unit variants of RNNs 
have many uses in biology, including protein structure 
prediction63,64, peptide design65 and predicting clinical 
diagnosis from health records66. These more advanced 
methods are often used in combination with CNNs, 
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independent input features. b | A convolutional neural network (CNN) uses filters that move across the input layer and 
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image, but 1D and 3D CNNs also find applications in biology. The dimensionality in this case refers to how many spatial 
dimensions there are in the data, and the connectivity within the CNNs can be configured accordingly. For example, 
biological sequences can be considered 1D and magnetic resonance imaging data can be considered 3D. c | A recurrent 
neural network (RNN) processes each part of a sequential input using the same learned parameters, giving an output 
and an updated hidden state for every input. The hidden state is used to carry information about the preceding parts  
of the sequence. In this case the probability of transcription factor binding is predicted for each base in a DNA sequence. 
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property in the output layer. e | An autoencoder consists of an encoder neural network, which converts an input into  
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back to the original input form. For example, protein sequences can be encoded and the latent representation used to 
generate novel protein sequences. In the example, four of the five residues are the same as the input after encoding and 
decoding by the autoencoder, indicating an accuracy of 80% on this sequence.
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which can increase accuracy67. RNNs can be very robust 
in analysing sequence- based data. For example, RNNs 
trained on millions of protein sequences have shown an 
ability to capture evolutionary and structural informa-
tion, and can be applied to a variety of supervised tasks, 
including tasks related to the design of novel protein 
sequences68.

Role of attention mechanisms and the use of trans-
formers. A problem identified with RNNs is the diffi-
culty they have in examining specific parts of an input 
sequence, which is important in order to generate 
a highly accurate output. The addition of an atten-
tion mechanism to RNNs, which allows the model to 
access all parts of the input sequence when calculating 
each output, was introduced to alleviate this problem. 
Recently it was shown that the RNN is not even required 
at all, and that attention alone can be used by itself; the 
resulting models, called ‘transformers’, have obtained 
state- of- the- art results on many natural language pro-
cessing benchmarks69. Transformer models have recently 
shown greater accuracy than RNNs for tasks on bio-
logical sequences, but it remains to be seen whether 
these methods, which are often trained on billions of 
sequences using thousands of graphics processing units, 
will be able to outperform existing alignment- based 
methods of sequence analysis in bioinformatics70. The 
outstanding success of AlphaFold2 in the 14th Critical 
Assessment of Protein Structure Prediction (CASP14) 
experiment, a blind assessment of computational 
approaches to predict protein structure from sequence, 
suggests that models using attention also hold promise 
for tasks in structural biology71.

Graph convolutional networks. Graph convolutional 
networks are particularly suitable for data that, while 
not having any obvious visible structure like an image, 
are nonetheless composed of entities connected by arbi-
trary specified relationships, or interactions72. Examples 
of such data relevant to biology include molecules (com-
posed of atoms and bonds)73–76 and protein–protein 
interaction networks (composed of proteins and inter-
actions)77. A graph, in computational terms, is just a rep-
resentation of such data, with each graph having a set of 
vertices or nodes, and a set of edges that represent vari-
ous types of relationships or connections between the 
nodes. With use of the examples given above, represen-
tations of atoms or proteins might be classed as node  
features, and bonds or interactions might be classed as 
edge features. Graph convolutional networks use the 
structure of the resulting graph to determine the flow 
of information in the neural network model. As shown 
in fig. 4d, adjacent nodes are considered when the fea-
tures of each node are updated throughout the network, 
with the node features in the last layer being used as the 
output (for example, interacting residues on a protein) 
or combined to form an output for the whole graph (for 
example, fold type of the protein). Graphs representing 
different associations can combine different sources of 
information when making predictions, such as com-
bining drug–gene and food–gene relationship graphs 
to predict foods for cancer prevention78. Software for 

training graph convolutional networks includes PyTorch 
Geometric79 and Graph Nets72.

Autoencoders. As the name suggests, autoencoders are 
neural network architectures designed to self- encode 
(autoencode) a collection of data points by represent-
ing them as points in a new space of predetermined 
dimensionality, usually far fewer than the number of 
input dimensions. One neural network (the encoder) is 
trained to convert the input into a compact internal rep-
resentation, called a ‘latent vector’ or ‘latent representa-
tion’, representing a single point in the new space. The  
second part of an autoencoder, called the ‘decoder’, takes 
the latent vector as input and is trained to produce as 
output the original data with the original dimensional-
ity (fig. 4e). Another way of looking at this is that the 
encoder tries to compress the input, and the decoder 
tries to decompress it. The encoder, latent representation 
and decoder are trained at the same time. Although this 
sounds like a pointless exercise, where the output just 
mimics the input, the idea is to learn a new representa-
tion of the input data that compactly encodes desirable 
features, such as similarity between the data points, while 
still retaining the ability to reconstruct the original data 
using the learned latent representation. Applications 
include predicting how closely related two data points 
are and enforcing some structure on the latent space that 
is useful for further prediction tasks. Another benefit  
of the encoder–decoder architecture is that, once trained,  
the decoder can be used in isolation to generate pre-
dictions of new, synthetic data samples which can be 
tested in the laboratory and contribute to synthetic 
biology efforts80. Autoencoders have been applied to a 
range of biological problems, including predicting DNA 
methylation state81, the engineering of gene and protein 
sequences82,83 and single- cell RNA- sequencing analysis84.

Training and improving neural networks. The general 
procedure for training machine learning models is out-
lined in Box 1. However, as neural networks are struc-
turally much more complex than the traditional machine 
learning algorithms, there are some concerns that are 
specific to neural networks. Having picked a neural net-
work as an appropriate model for the intended appli-
cation (fig. 1), it is often a good idea to train it on just 
a single training example (for example, a single image 
or gene sequence). This trained model is not useful for 
making predictions, but the training is good at revealing 
programming errors. The training loss function should 
very quickly go to zero as the network simply memorizes 
the input; if it does not, there is likely an error in the 
code, or the algorithm is not complex enough to model 
the input data. Once the network has passed this basic 
debugging test, training on the whole training set can 
proceed, where the training loss function is minimized. 
This may require tuning of hyperparameters such as the 
learning rate (fig. 2e). By monitoring loss on the train-
ing and validation sets, overfitting of the network can 
be detected where the training loss continues to drop 
lower and the loss on the validation set starts to increase. 
Training is usually stopped at that point, a process 
known as early stopping (fig. 2f). Overfitting of a neural 
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network (or any machine learning model), visualized in 
fig. 2d, means that the model is starting to simply mem-
orize features of the training set and thus starting to lose 
its ability to generalize to new data. Early stopping is a 
good way of preventing this, but other techniques can be 
used during training, such as regularization of the model 
or dropout techniques, where nodes in the network are 
randomly ignored to force the network to learn a more 
robust prediction strategy involving multiple nodes.

Popular software packages used to train neural net-
works include PyTorch85 and Tensorflow86. Training 
neural networks is computationally demanding, usually 
requiring a graphics processing unit or tensor processing 
unit with sufficient memory, as these devices can pro-
vide a 10 to 100 times speedup over use of the standard 
central processing unit. This speedup is required when 
training the larger models that have shown success in 
recent years, and when training is performed on large 
datasets. However, running an already trained model is 
usually considerably faster and is often feasible on just an 
ordinary central processing unit. Cloud computing solu-
tions from common providers exist for those without 
access to a graphics processing unit for training, and it is 
worth noting that for small tasks, Colaboratory (Colab) 
allows Python code to be tested on either graphics pro-
cessing units or tensor processing units free of charge. 
Using Colab is an excellent way of getting started with 
Python- based deep learning.

Challenges for biological applications
Perhaps the single biggest challenge of modelling biologi-
cal data is the sheer variety1. Biologists work with data 
such as gene and protein sequences, gene expression 
levels over time, evolutionary trees, microscopy images, 
3D structures and interaction networks, to name but 
a few. We have summarized some best practices and 
important considerations for specific biological data 
types in TABle 2. Owing to the diversity of data types 
encountered, biological data often require somewhat 
bespoke solutions for handling them effectively, and this 
makes it difficult to recommend off- the- shelf tools or 
even gene ral guidelines for the use of machine learning 
in these problem domains, as the choice of model, train-
ing procedure and test data will depend heavily on the 
exact questions one wants to answer. Nevertheless, there 
are some common issues that need to be considered for 
the successful use of machine learning in biology, but also 
more generally.

Data availability. Biology is somewhat unique in that 
there exist some problem domains that have very large 
quantities of data publicly available, whereas other prob-
lem domains have very small quantities. An example is 
the relative abundance of biological sequence data in 
public databases such as GenBank and UniProt, whereas 
reliable data on protein interactions are much harder to 
come by. The quantity of data available for a given prob-
lem has a profound impact on the choice of techniques 
that can effectively be used. As a very rough guideline, 
when only small amounts of data (hundreds of or a few 
thousand examples) are available, one is essentially forced 
to use more traditional machine learning methods, as 

these are more likely to produce robust predictions. When 
larger quantities are available, one can start to consider 
more highly parameterized models such as deep neural 
networks. In supervised machine learning, the rela tive 
proportions of each ground truth label in the dataset 
should also be considered, with more data required  
for machine learning to work if some labels are rare87.

Data leakage. Although the scale and complexity of 
biological data may make them seem ideal for machine 
learning, there are some important considerations that 
need to be borne in mind21,88,89. One key concern is 
how to validate the performance of a model. The com-
mon setup of training, validation and test sets can lead 
to problems such as researchers repeatedly testing on 
the same test set with a variety of models to obtain the 
greatest accuracy, and hence risking overestimating per-
formance on it without generalizing to other test sets 
or new data. However, biological data present a further 
non- trivial question: in a large dataset with related 
entries (for example, as a result of familial relationships, 
or evolutionary relationships), how does one ensure that 
two closely related entries do not end up split between 
the training set and the test set? If this occurs, then the 
ability of the model to remember specific cases is tested, 
rather than its ability to predict the property in question. 
This is one example of an issue often called ‘data leak-
age’ and leads to results that appear better than they are, 
which is perhaps one reason researchers are reluctant to 
be rigo rous about the issue. Other types of data leakage 
are possible (for example, using any data or features dur-
ing training that would not be available during testing). 
Here we focus on the problem of having related samples 
in the training and testing sets.

What we mean by ‘related’ here depends on the nature 
of the study. It might be a case of sampling data from the 
same patient or the same organism. However, the classic 
situation where data leakage occurs in biology is seen in 
studies on protein sequences and structures. Typically, 
but usually not correctly, researchers try to ensure that 
no protein in the training set has sequence identity above 
a certain threshold to any protein in the test set, usually 
at a threshold of 30% or 25%. This is enough to exclude 
many homologous pairs of proteins, but it has been 
known for decades that some homologous proteins can 
have virtually no sequence similarity90,91, which would 
mean that simply filtering by sequence identity would be 
insufficient to prevent data leakage. This is particularly 
important for models that operate on sequence align-
ments or sequence profiles as input, as although two 
individual protein sequences may not share any obvi-
ous similarity, their profiles could be virtually identical. 
This means that for a machine learning model, these 
two profiles would essentially be the same data point — 
both will be describing the same protein family. For pro-
tein sequences, one solution to avoid this problem is to 
search the test data with a sensitive hidden Markov model 
profile comparison tool such as HH- suite, which can 
find sequences distantly related to the training data92. 
In the common case where protein structure is being 
used as input or output, structural classifications such as 
CATH93 or ECOD94 can be used to exclude similar folds 

Regularization
restricting the values of 
parameters to prevent the 
model from overfitting to  
the training data. for example, 
penalizing high parameter 
values in regression models 
reduces the flexibility of the 
model and can stop it fitting  
to noise in the training data.

Cloud computing
on- demand computing 
services, including processing 
power and data storage, 
typically available via the 
internet. A pay- as- you- go 
model is usually used. use  
of cloud computing minimizes 
up- front iT infrastructure costs.

Hidden Markov model
A statistical model that can be 
used to describe the evolution 
of observable events that 
depend on factors that are  
not directly observable.  
it has various uses in biology, 
including representing protein 
sequence families.
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or homologous proteins. Similar issues affect studies 
predicting protein–ligand binding affinity95.

To be clear, data leakage is not an intrinsic issue with 
any particular type of data, but rather it is a problem 
with how the data are used when training and evaluating 
machine learning models. One would certainly expect a 
trained model to produce very good results on data that 
are similar to the training set. The issue of data leakage 
becomes a problem when a model that appears accurate 
on some benchmark set performs poorly on new data 
that are actually different from the training set; in other 
words, the model does not generalize, likely because 
it has not modelled the true relationship between the 
variables, but rather remembered hidden associations 
present in the data.

Because of frequent complaints from reviewers, 
some journals are now starting to require rigorous 

benchmarking to be performed before a paper can be 
considered for publication. Without proper testing, the 
performance of a model will very likely not be represent-
ative of real- world performance on unseen data, which 
undermines user confidence in the model. Worse, authors 
of future studies may be misled into thinking that inad-
equate testing is defensible simply because it has already 
appeared in (possibly several) peer- reviewed articles, 
even though it is not. As mentioned in Box 2, authors, 
peer reviewers and journal editors all have a responsi-
bility for ensuring that data leakage has been avoided. 
Knowingly leaving these kinds of errors in place is really 
little better than fabricating data at the end of the day.

Interpretability of models. It is usually the case that bio-
logists want to know why a particular model is making 
a particular prediction (that is, what features of the input 

Table 2 | recommendations for the use of machine learning strategies for different biological data types

input data example prediction tasks recommended models challenges

Gene sequence DNA accessibility14

3D genome organization58

Enhancer–promoter interactions40

1D CNNs

RNNs

Transformers

Repetitive regions in genome

Sparse regions of interest

Very long sequences

Protein sequence Protein structure23,55

Protein function132

Protein–protein interaction133

2D CNNs and residual networks using 
co-variation data

Multilayer perceptrons with windowing

Transformers

Metagenome data stored in many places 
and therefore hard to access

Data leakage (from homology) can make 
validation difficult

Protein 3D 
structure

Protein model refinement134

Protein model quality 
assessment135

Change in stability upon mutation136

GCNs using molecular graph

3D CNNs using coordinates

Traditional methods using structural features

Clustering

Lack of data, particularly on protein 
complexes

Lack of data on disordered proteins

Gene expression Intergenic interactions or 
co- expression137

Organization of transcription 
machinery138

Clustering

CNNs

Autoencoders

Unclear link between co- expression and 
function

High dimensionality

High noise

Mass spectrometry Detecting peaks in spectra139

Metabolite annotation140

CNNs using spectral data

Traditional methods using derived features

Lack of standardized benchmarks141

Normalizationa required between 
different datasets

Images Medical image recognition24,62

Cryo- EM image reconstruction60,142

RNA- sequencing profiles143

2D CNNs and residual networks

Autoencoders

Traditional methods using image features

Systematic differences in data collection 
affect prediction

Hard to obtain large datasets of 
consistent data

Molecular 
structure

Antibiotic activity73

Drug toxicity54

Protein- ligand docking39

Novel drug generation144

GCNs using molecular graph

Traditional methods or multilayer 
perceptrons using molecular properties

RNNs using text- based representations 
of molecular structure such as SMILES

Autoencoders

Experimental data available for only a 
tiny fraction of possible small molecules

Protein–protein 
interaction 
network

Polypharmacology side effects77

Protein function145

GCNs

Graph embedding

Interaction networks can be incomplete

Cellular location affects whether 
proteins interact

High number of possible combinations

Each type of biological data has prediction tasks in which it has been used effectively, machine learning models that are appropriate and specific challenges when 
using machine learning. Some challenges, such as high dimensionality, affect most biological data types. CNN, convolutional neural network; cryo- EM, cryogenic 
electron microscopy; GCN, graph convolutional network; RNN, recurrent neural network. a‘Normalization’ means rescaling or otherwise transforming variables 
from different datasets with the intention that their contributions should carry roughly equal weight and their ranges are comparable on a joint scale. The most 
common way of achieving this is by subtracting the means of each variable and dividing by their standard deviations, which can also be called ‘standardization’. 
This is required because different instruments, experimental protocols and so on can produce systematic differences in measurements of the same quantities, 
rendering it difficult or impossible to compare trends between experiments.
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data the model is responding to and how) and why it 
works in some cases but not others. In other words, bio-
logists are often interested in discovering mechanisms 
and the factors responsible for modelling output, rather 
than just accurate modelling, as mentioned previously. 
The ability to interpret a model depends on the machine 
learning method used and the input data. Interpretation 
is usually easier for non- neural network methods, as 
these have feature sets more amenable to direct mean-
ingful interpretation and generally have fewer learnable 
parameters. In the case of, say, a simple linear regres-
sion model, the parameter assigned to each input feature 
gives a direct indication of how that feature affects  
the prediction.

The low cost of training non- neural network meth-
ods means that it is advisable to perform ablation studies, 
where the effect on performance of removing defined 
features of the input is measured. Ablation studies can 
reveal which features are most useful for the modelling 
task at hand, and are one way to possibly discover more 
robust, efficient and interpretable models.

Interpreting a neural network (particularly a deep 
neural network) is generally much harder due to the 
frequently large number of input features and param-
eters in the model. It is still possible to identify, for 
example, regions in an input image most responsible  
for a particular classification by building a saliency map28. 
Although saliency maps show which regions of an image 
are important, it can be more difficult to pinpoint which 
properties of the data in these locations were responsi-
ble for the prediction, particularly when the inputs are 
not easily interpretable by humans, such as images and 
text. Nevertheless, saliency maps and similar representa-
tions can be useful as a ‘sanity check’ to ensure that the 
model is indeed looking at the relevant parts of an image.  
This can help avoid situations where models make unin-
tended connections, such as classifying medical images 
on the basis of hospital or department labels in the cor-
ner of the image rather than the medical content of the 
image itself96. Generating adversarial examples, synthetic 
inputs that cause a neural network to produce confident 
incorrect predictions, can also be a good way of pro-
viding information on which features are being most 
used for prediction97. For example, CNNs often use tex-
tures (such as stripes in animal fur) to classify objects in 
images, where humans would primarily use the shapes51.

Privacy- preserving machine learning. Some biological 
data, most notably human genomics data and commer-
cially sensitive pharmaceutical data, have data privacy 
implications. There have been a number of efforts to 
allow sharing of data and distributed training of machine 
learning models in the context of data privacy. For exam-
ple, modern cryptographic techniques allow training of a 
drug–target interaction model where the data and results 
are provably secure98. Simulated, synthetic participants 
that closely resemble real participants in a clinical trial 
can lead to results that are accurate for real participants 
without revealing identifying data99. Algorithms have 
been developed for efficient federated model training 
with data stored in different places100.

The need for interdisciplinary collaborations. Unless 
publicly available data are being used, it is rare that one 
research group will have the expertise and resources to 
both collect data for a machine learning study and also 
apply the most appropriate machine learning method 
effectively. It is common for experimental biologists to 
collaborate with computer scientists, with such collabo-
rations often obtaining excellent results. It is, however, 
important in such collaborations that each side has some 
working knowledge of the other. In particular, computer 
scientists should make an effort to understand the data, 
such as the expected degree of noise and reproducibility, 
and biologists should understand the limitations of the 
machine learning algorithms being used. Building such 

Saliency map
in the context of machine 
learning, an image generated 
to show which pixels in an  
input image contribute to the 
prediction made by a model.  
it is useful in interpreting 
models.

Box 2 | evaluating articles that use machine learning

Here are some questions to consider when reading or reviewing articles that use 
machine learning on biological data. it is useful to bear these considerations in mind, 
even if the answers are not apparent, and these questions can be used as the basis for  
a discussion with collaborators with the required expertise. a surprising number of 
articles do not fulfil these criteria148.

is the dataset adequately described?
Complete steps to assemble the dataset should be provided, ideally with the dataset 
or summary data (for example, biological database iDs) available at a persistent urL.  
in our experience, a thorough description of the machine learning method but with 
only a cursory reference to the data is a red flag. if a standard dataset or a dataset from 
another study is being used, then this should be adequately justified in the article.

is the test set valid?
Based on the discussion in the section Challenges for biological applications, check that 
the test set is sufficient to benchmark the property under investigation. there should be 
no data leakage between the training set and the test set, the test set should be of large 
enough to give reliable results and the test set should mirror the range of examples a 
standard user of the tool would be likely to use it on. the composition and size of the 
training and test sets should be discussed in detail. authors have a responsibility to 
ensure that all steps have been taken to avoid data leakage, and these steps should be 
described in the article, along with the rationale behind them. Journal editors and peer 
reviewers should also ensure that these tasks have been performed to a good standard, 
and certainly should never just assume that they have been.

is the model choice justified?
reasons should be given for the choice of machine learning method. Neural networks 
should be used because they are appropriate for the data and question in hand, and not 
just because everyone else is using them. Discussion of models that were tried and did 
not work should be encouraged as it may help others; too often a complex model is 
presented without any discussion of the inevitable trial and error that will have been 
required to end up with that model.

Has the method been compared with other methods?
a novel method should be compared with existing methods that show good 
performance and are used in the community. ideally methods using a variety of model 
types should be compared, which can aid in interpreting results. it is surprising how 
many complex models can be matched in performance by simple regression methods.

are the results too good to be true?
Claims of greater than 99% accuracy are not uncommon in machine learning articles  
in biology. usually, this is a sign of a problem with the testing rather than an amazing 
breakthrough. Both authors and reviewers should take note of this point.

is the method available?
at the very least, someone who wants to use a trained model from an article should be 
able to run a prediction using a web service or binary file. ideally, at least source code 
and the trained model should be available at a persistent urL and under a common 
licence149,150. also making the training code available is the ideal scenario, as this further 
increases the reproducibility of the article and allows other researchers to build on the 
method without essentially having to start from scratch. Journals should bear some 
responsibility here to ensure that this becomes the norm.
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understanding takes time and effort, but is important to 
prevent the often unintentional dissemination of poor 
models and misleading results.

Future directions
The increasing use of machine learning in biological 
studies looks set to continue for the foreseeable future. 
This increased uptake has been enabled by important 
advances in methodology, software and hardware, all of 
which keep on developing. A number of large technology 
companies are using their technical expertise and con-
siderable resources to assist academic researchers or 
even perform their own research in biology with innova-
tive machine learning strategies. To date, however, most 
success has come from applying algorithms developed 
in other fields directly to biological data. For example, 
CNNs and RNNs were developed for applications such 
as image analysis (for face recognition or in self- driving 
cars) and natural language processing, respectively. One 
of the most exciting prospects for machine learning in 
biology is algorithms tailored specifically to biological 
data and biological questions101,102. If the known struc-
ture of a biological system can be exploited and neural 
networks used to learn the unknown parts, then increas-
ingly heavily parameterized models can be replaced with 
simpler ones that are more amenable to interpretation 
and more robust on new data103. Applications include 
biological reaction systems and pharmacokinetics, 
where systems of known differential equations can be 
used. This will also assist in the move from predictive 
machine learning to generative models that can create 
new entities, such as designing proteins with novel 
structures and functions104,105.

As the variety of useful architectures and input data 
types increases, the paradigm of differentiable program-
ming is emerging from the field of deep learning106. 
Differentiable programming is the use of automatic  
differentiation, the central concept in training neural net-
works, to calculate gradients and improve parameters in 
any desired algorithm. This shows promise for physi-
cal models of biological systems in protein structure 
prediction63,107, and for learning force field parameters 
for molecular dynamics simulations108,109. The develop-
ment of differentiable software packages such as JAX110 
and packages tailored to specific areas of biology such 
as Selene111, Janggu112 and JAX MD113 will assist the 
development of such methods.

The progress in biological data analysis with 
machine learning has also been enabled by the deposi-
tion of trained models in publicly available repositories.  

In this way, researchers working on similar problems 
can use these models without the need for training, 
and a variety of different models can be used with 
only minimal effort required for switching between 
them114. The field has also seen an expansion of auto-
mated machine learning pipelines, which train and tune 
a variety of models without user input and return the 
best performing model. These may assist non- experts 
in training models115. However, these resources cannot 
replace a thorough understanding of the method being 
used, which is important for choosing the appropri-
ate inductive bias and interpreting the predictions of 
the model. It remains to be seen whether in the future 
automated machine learning will be reliable and flexi-
ble enough to allow experimentalists to routinely use 
complex machine learning algorithms independently, 
or whether machine learning expertise will remain a 
necessity.

As has been discussed, rigorous validation of models 
and comparison of different models is challenging 
but remains necessary to identify the best perform-
ing models and inform future research directions. For 
the field to progress, it will be necessary to develop 
benchmark datasets and validation tasks116, such as 
ProteinNet117, ATOM3D118 and TAPE119, and for these 
to become widely used. Of course, overoptimizing to a 
particular benchmark can occur, and it is important that 
resear chers resist the temptation to do this to make their 
results seem better. Blind assessments such as CASP120 
and the Critical Assessment of Functional Annotation121 
will continue to play an important role in assessing 
which models perform best.

Overall, the variety of biological data makes it hard 
to provide general guidelines for machine learning in 
biology. Hence, we have aimed here to give biologists 
an overview of the different methods available and to 
provide them with some ideas about how to conduct 
effective machine learning with their data. Of course, 
machine learning is not suited to every problem, and 
it is just as important to know when to avoid it: when 
there are not sufficient data, when understanding rather 
than prediction is required or when it is unclear how to  
assess performance in a fair way. The boundaries of 
when machine learning is useful in biology are still being 
explored and will continue to change in accordance with 
the nature and volume of available experimental data. 
Undeniably, though, machine learning has had a huge 
impact on biology and will continue to do so.
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Automatic differentiation
A set of techniques to 
automatically calculate the 
gradient of a function in a 
computer program. used to 
train neural networks, where  
it is called ‘backpropagation’.

Gradients
The rate of change of one 
property as another property 
changes. in neural networks, 
the set of gradients of the loss 
function with respect to the 
neural network parameters, 
computed via a process known 
as backpropagation, is used to 
adjust the parameters and thus 
train the model.
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